References
<A NAME="RU25203ST-1">1</A>
Perron F.
Albizati KF.
Chem. Rev.
1989,
89:
1617
<A NAME="RU25203ST-2">2</A>
Fletcher MT.
Kitching W.
Chem. Rev.
1995,
95:
789
<A NAME="RU25203ST-3">3</A>
Francke W.
Kitching W.
Curr. Org. Chem.
2001,
5:
233
<A NAME="RU25203ST-4">4</A>
Boivin TLB.
Tetrahedron
1987,
43:
3309
<A NAME="RU25203ST-5">5</A>
Mead KT.
Brewer NB.
Curr. Org. Chem.
2003,
7:
227
<A NAME="RU25203ST-6">6</A>
Deslongchamps P.
Stereoelectronic Effects in Organic Chemistry
Pergamon;
Oxford:
1983.
For example:
<A NAME="RU25203ST-7A">7a</A>
Hungerbuler E.
Naef R.
Wasmuth D.
Seebach D.
Helv. Chim. Acta
1980,
63:
1960
<A NAME="RU25203ST-7B">7b</A>
Rosini G.
Ballini R.
Petrini M.
Marotta E.
Angew. Chem., Int. Ed. Engl.
1986,
25:
941
<A NAME="RU25203ST-7C">7c</A>
Occhiato EG.
Scarpi D.
Menchi G.
Guarna A.
Tetrahedron: Asymmetry
1996,
7:
1929
<A NAME="RU25203ST-7D">7d</A>
Occhiato EG.
Guarna A.
De Sarlo F.
Scarpi D.
Tetrahedron: Asymmetry
1995,
6:
2971
<A NAME="RU25203ST-7E">7e</A>
Hirai K.
Ooi H.
Esumi T.
Iwabuchi Y.
Hatakeyama S.
Org. Lett.
2003,
6:
857
<A NAME="RU25203ST-8">8</A>
Slladie G.
Huser N.
Fisher J.
Decian A.
J. Org. Chem.
1995,
60:
4988
<A NAME="RU25203ST-9">9</A>
Miyakoshi N.
Mukai C.
Org. Lett.
2003,
6:
2335
<A NAME="RU25203ST-10">10</A>
Suenaga K.
Araki K.
Sengoku T.
Uemura D.
Org. Lett.
2001,
4:
527
<A NAME="RU25203ST-11">11</A> Partial result has been published in:
Wu Z.-H.
Wang J.
Li J.-C.
X Y.-Z.
Yu A.-L.
Feng Z.-R.
Shen J.
Wu Y.-L.
Guo P.-F.
Wang Y.-N.
Natl. Prod. Res. Dev. (China)
1994,
6:
1
<A NAME="RU25203ST-12A">12a</A>
Hegnauer R. In Chemotaxonomie der Pflanzen
Vol.3:
Birkhauser Verlag;
Basel:
1964.
p.447
<A NAME="RU25203ST-12B">12b</A>
Bohlmann F.
Burkhardt T.
Zdero C.
Naturally Occurring Acetylenes
Academic Press;
London:
1973.
<A NAME="RU25203ST-12C">12c</A>
Greger H. In The Biology and Chemistry of Compositae
Heywood VH.
Harborne JB.
Turner BL.
Academic Press;
London:
1977.
Chap. 32.
<A NAME="RU25203ST-12D">12d</A>
Bohlmann F. In Chemistry and Biology of Naturally Occurring Acetylenes and Related Compounds
Lam J.
Bretler H.
Anason T.
Hansen L.
Elsvier;
Amsterdam:
1988.
p.1
<A NAME="RU25203ST-12E">12e</A>
Zdero C.
Bohlmann F.
Plant Syst. Evol.
1990,
171:
1
<A NAME="RU25203ST-13">13</A>
Christensen LP.
Phytochemistry
1992,
31:
7
<A NAME="RU25203ST-14A">14a</A>
Bohlmann F.
Jastrow H.
Ertringshausen G.
Kramer D.
Chem. Ber.
1964,
97:
801
<A NAME="RU25203ST-14B">14b</A>
Bohlmann F.
Florentz G.
Chem. Ber.
1966,
99:
990
<A NAME="RU25203ST-14C">14c</A>
Bohlmann F.
Diedrich B.
Gordon W.
Fanghänel L.
Schneider J.
Tetrahedron Lett.
1965,
1385
<A NAME="RU25203ST-15A">15a</A>
Gao Y.
Wu W.-L.
Ye B.
Zhou R.
Wu Y.-L.
Tetrahedron Lett.
1996,
37:
893
<A NAME="RU25203ST-15B">15b</A>
Gao Y.
Wu W.-L.
Wu Y.-L.
Ye B.
Zhou R.
Tetrahedron
1998,
54:
12523
<A NAME="RU25203ST-16">16</A>
Fan J.-F.
Zhang Y.-F.
Wu Y.
Wu Y.-L.
Chin. J. Chem.
2001,
19:
1254
<A NAME="RU25203ST-17">17</A>
Fan J.-F.
Yin B.-L.
Zhang Y.-F.
Wu Y.-L.
Wu Y.
Huaxue Xuebao
2001,
59:
1756
<A NAME="RU25203ST-18">18</A>
Yin B.-L.
Yang Z.-M.
Hu T.-S.
Wu Y.-L.
Synthesis
2003,
1995
<A NAME="RU25203ST-19">19</A>
Typical Procedure of Acid Catalyzed Sipoketalization for Synthesis of Compound 11a: A mixture of 9a (1.16 g, 5 mmol), (1R, 2R)-(-)-pseudoephedrine (0.83 g, 5 mmol), MeOH (20 mL) and Et3N (10 mL) was refluxed under nitrogen for 24 h. Removal of the solvents under reduced
pressure gave a yellow oily crude product amide. Without further purification the
oil was solved in anhyd CH2Cl2 (20 mL) and to the obtained solution was added CSA (20 mg). The reaction mixture
was stirred at r.t. until the disappearance of all the starting material (ca. 24 h)
and then quenched with sat. aq NaHCO3. The aqueous layer was extracted with CH2Cl2 and the combined organic layers were washed with brine and dried over Na2SO4. Removal of solvent gave the crude spiroketal, which was purified by flash chromatography
to yield compound 11a (1.58 g, 91%): mp 162-163 °C, [α]D
20 +345.2 (c 1.0, CHCl3). IR (KBr): 3101, 1674, 1658, 1490, 1450, 1243, 1009, 925, 746, 693 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.47-7.13 (10 H, m), 6.50 (1 H, d, J = 5.5 Hz), 6.19 (1 H, d, J = 5.5 Hz), 5.50 (1 H, s), 4.81 (1 H, d, J = 5.8 Hz), 4.17 (1 H, m), 3.15 (3 H, s), 1.37 (3 H, d, J = 6.7 Hz). MS: m/z (%) = 347 (17.0) [M+], 256 (2.1), 173 (12.5), 172 (79.0), 128 (10.0), 118 (100.0), 117 (34.6), 116 (10.7),
115 (12.8). HRMS: m/z calcd for C22H21O3N: 347.1516. Found: 347.1509.
<A NAME="RU25203ST-20">20</A> For a recent review on aromatic interactions in organic synthesis, see:
Jones GB.
Tetrahedron
2001,
57:
7999 ; and references cited therein
For examples of aromatic interactions in molecular recognition, see:
<A NAME="RU25203ST-21A">21a</A>
Inouye M.
Itoh MS.
Nakazumi H.
J. Org. Chem.
1999,
64:
9393
<A NAME="RU25203ST-21B">21b</A>
Ponzini F.
Zagha R.
Hardcastle K.
Siegel JS.
Angew. Chem. Int. Ed.
2000,
39:
2323
For examples in biology, see:
<A NAME="RU25203ST-22A">22a</A>
Quan RW.
Li Z.
Jacobsen EN.
J. Am. Chem. Soc.
1996,
118:
8156
<A NAME="RU25203ST-22B">22b</A>
Wedemayer GJ.
Patten PA.
Wang LH.
Schultz PG.
Stevens RC.
Science
1997,
276:
1665
<A NAME="RU25203ST-23">23</A>
Typical Procedure of Acid Catalyzed Sipoketalization for Synthesis of Compound 20
and 21: To a solution of 19 (1.2 g, 3.48 mmol) in 15 mL of CH2Cl2 was added catalytic amount of CSA (40 mg). The reaction mixture was stirred at r.t.
for 24 h, and the separated aqueous phase was extracted with CH2Cl2, and the combined organic layers were washed with brine and dried over Na2SO4 After removal of the solvent, the residue was chromatographed to afford 20 (828 mg, 72.7%) and 21 (230 mg, 20.2%). Compound 20: mp 142-143 °C. IR (film): 3180, 2974, 1656, 1492, 1352, 1237, 1097, 1014, 747, 690
cm-1. 1H NMR (300 MHz, CDCl3):
δ = 7.60 (2 H, d, J = 7.4 Hz), 7.27 (2 H, m), 7.15 (1 H, m), 6.51 (1 H, d, J = 5.7 Hz), 6.07 (1 H, dd, J = 0.9 Hz, 5.7 Hz), 5.52 (1 H, s), 4.19 (1 H, ddd, J = 3.3 Hz, 6.9 Hz, 11.1 Hz), 3.63-3.37 (3 H, m), 3.28 (1 H, dd, J = 3.3 Hz, 12.3 Hz), 1.85 (1 H, m), 1.22 (3 H, t, J = 7.5 Hz), 0.99 (6 H, t, J = 5.7 Hz). MS: m/z (%) = 313 (31.8) [M+], 173 (27.5), 172 (100.0), 144 (19.8), 128 (16.0) Anal. Calcd for C19H23NO3: C, 72.82; H, 7.40; N, 4.47. Found: C, 72.99; H, 7.62; N, 4.31.
Compound 21: syrup. IR (film): 3086, 2964, 2935, 1669, 1597, 1491, 1352, 1238, 825, 690 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.58 (2 H, d, J = 7.5 Hz), 7.26 (2 H, m), 7.16 (1 H, m), 6.47 (1 H, d, J = 5.7 Hz), 6.22 (1 H, d, J = 5.7 Hz), 5.50 (1 H, s), 3.85 (2 H, m), 3.52 (2 H, dq, J = 1.8 Hz, 7.2 Hz), 3.34 (1 H, dd, J = 1.8 Hz, 10.8 Hz), 1.94 (1 H, m), 1.21 (3 H, t, J = 7.2 Hz), 1.02 (3 H, d, J = 7.2 Hz), 0.96 (3 H, d, J = 7.2 Hz). MS: m/z (%) = 313 (38.3) [M+], 173 (26.0), 172 (100.0), 144 (22.1), 128 (12.9), 116 (17.0), 115 (22.1). Anal.
Calcd for C19H23NO3: C, 72.82; H, 7.40; N, 4.47. Found: C, 72.69; H, 7.46; N, 4.41.